Книжная полка Сохранить
Размер шрифта:
А
А
А
|  Шрифт:
Arial
Times
|  Интервал:
Стандартный
Средний
Большой
|  Цвет сайта:
Ц
Ц
Ц
Ц
Ц

Солнечно-земная физика, 2021, том 7, № 3

Бесплатно
Основная коллекция
Артикул: 349900.0027.99
Солнечно-земная физика, 2021, том 7, № 3. - Текст : электронный. - URL: https://znanium.ru/catalog/product/1212065 (дата обращения: 03.06.2024)
Фрагмент текстового слоя документа размещен для индексирующих роботов. Для полноценной работы с документом, пожалуйста, перейдите в ридер.
СОЛНЕЧНО-ЗЕМНАЯ ФИЗИКА 

 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор). Регистрационный номер ЭЛ № ФС 77 – 79288 от 2 октября 2020 г.

Издается с 1963 года 

ISSN 2712-9640

              DOI: 10.12737/issn. 2712-9640 
              Том 7. № 3. 2021. 127 с. 
              Выходит 4 раза в год 

Учредители: Федеральное государственное бюджетное учреждение науки 
Ордена Трудового Красного Знамени Институт солнечно-земной физики 
Сибирского отделения Российской академии наук 

Федеральное государственное бюджетное учреждение «Сибирское отделение Российской академии наук»

 

 

SOLAR-TERRESTRIAL PHYSICS 

 

Registered by Federal Service for Supervision 
of Communications, Information Technology 
and Mass Media (Roscomnadzor). Registration 
Number EL No. FS 77 – 79288 of October 02, 
2020. ЭЛ № ФС77-79288

The edition has been published since 1963 

ISSN 2712-9640

               DOI: 10.12737/issn.2412-4737 
               Vol. 7. Iss. 3. 2021. 127 p. 
               Quarterly 

Founders: Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences 

Siberian Branch of the Russian Academy of Sciences

 

 

Состав редколлегии журнала 
 
 
Editorial Board 
 

Жеребцов Г.А., академик —
главный редактор, ИСЗФ СО РАН

Zherebtsov G.A., Academician, Editor-in-Chief, 
ISTP SB RAS

Степанов А.В., чл.-к. РАН —
заместитель главного редактора, ГАО РАН

Stepanov A.V., Corr. Member of RAS, 
Deputy Editor-in-Chief, GAO RAS

Потапов А.С., д-р физ.-мат. наук —
заместитель главного редактора, ИСЗФ СО РАН

Potapov A.S., D.Sc. (Phys.&Math), 
Deputy Editor-in-Chief, ISTP SB RAS

Члены редколлегии 
Members of the Editorial Board  

Алтынцев А.Т., д-р физ.-мат. наук, ИСЗФ СО РАН
Altyntsev A.T., D.Sc. (Phys.&Math.), ISTP SB RAS

Афанасьев Н.Т., д-р физ.-мат. наук, ИГУ
Afanasiev N.T., D.Sc. (Phys.&Math.), ISU

Белан Б.Д., д-р физ.-мат. наук, ИОА СО РАН
Belan B.D., D.Sc. (Phys.&Math.), IAO SB RAS

Гульельми А.В., д-р физ.-мат. наук, ИФЗ РАН
Guglielmi A.V., D.Sc. (Phys.&Math.), IPE RAS

Деминов М.Г., д-р физ.-мат. наук, ИЗМИРАН
Deminov M.G., D.Sc. (Phys.&Math.), IZMIRAN

Ермолаев Ю.И., д-р физ.-мат. наук, ИКИ РАН
Yermolaev Yu.I., D.Sc. (Phys.&Math.), IKI RAS

Лазутин Л.Л., д-р физ.-мат. наук, НИИЯФ МГУ
Lazutin L.L., D.Sc. (Phys.&Math.), SINP MSU

Леонович А.С., д-р физ.-мат. наук, ИСЗФ СО РАН
Leonovich A.S., D.Sc. (Phys.&Math.), ISTP SB RAS

Мареев Е.А., чл.-к. РАН, ИПФ РАН
Mareev E.A., Corr. Member of RAS, IAP RAS

Мордвинов А.В., д-р физ.-мат. наук, ИСЗФ СО РАН
Mordvinov A.V., D.Sc. (Phys.&Math.), ISTP SB RAS

Обридко В.Н., д-р физ.-мат. наук, ИЗМИРАН
Obridko V.N., D.Sc. (Phys.&Math.), IZMIRAN

Перевалова Н.П., д-р физ.-мат. наук, ИСЗФ СО РАН
Perevalova N.P., D.Sc. (Phys.&Math.), ISTP SB RAS

Салахутдинова И.И., канд. физ.-мат. наук,
Salakhutdinova I.I., C.Sc. (Phys.&Math.),

ученый секретарь, ИСЗФ СО РАН
Сафаргалеев В.В., д-р физ.-мат. наук, ПГИ 

Scientific Secretary, ISTP SB RAS
Safargaleev V.V., D.Sc. (Phys.&Math.), PGI 

Сомов Б.В., д-р физ.-мат. наук, ГАИШ МГУ
Somov B.V., D.Sc. (Phys.&Math.), SAI MSU

Стожков Ю.И., д-р физ.-мат. наук, ФИАН
Stozhkov Yu.I., D.Sc. (Phys.&Math.), LPI RAS

Тащилин А.В., д-р физ.-мат. наук, ИСЗФ СО РАН
Tashchilin A.V., D.Sc. (Phys.&Math.), ISTP SB RAS

Уралов А.М., д-р физ.-мат. наук, ИСЗФ СО РАН
Uralov A.M., D.Sc. (Phys.&Math.), ISTP SB RAS

Лестер М., проф., Университет Лестера, Великобритания
Lester M., Prof., University of Leicester, UK

Йихуа Йан, проф., Национальные астрономические
обсерватории Китая, КАН, Пекин, Китай 

Yan Yihua, Prof., National Astronomical Observatories,
Beijing, China 

Панчева Дора, проф., Национальный институт геодезии, 
геофизики и географии БАН, София, Болгария 

Pancheva D., Prof., Geophysical Institute, Bulgarian
Academy of Sciences, Sofia, Bulgaria 

Полюшкина Н.А., ответственный секретарь редакции,
ИСЗФ СО РАН 

Polyushkina N.A., Executive Secretary of Editorial Board,
ISTP SB RAS 

СОДЕРЖАНИЕ

Ли Лу, Цин-Лун Ю, Пин Чжоу, Синь Чжан, Сянь-Го Чжан, Синь-Юэ Ван, Юань Чан. Моделиро
вание мониторинга визуализации энергичных нейтральных атомов геомагнитосферы на лунной базе .…. 3–11 

Пархомов В.А., Еселевич В.Г., Еселевич М.В., Дмитриев А.В., Суворова А.В., Хомутов С.Ю., 

Цэгмэд Б., Теро Райта. Магнитосферный отклик на взаимодействие с диамагнитной структурой 
спорадического солнечного ветра ……………………………………………..............................................

 
12–30 

Макаров Г.А. Смещения значений геомагнитных индексов магнитосферного кольцевого тока …. 31–38

Потапов А.С., Полюшкина Т.Н., Цэгмэд Б. Морфология и диагностический потенциал ионо
сферного альвеновского резонатора ……………………………………………………………………….. 39–56 

Золотухина Н.А., Полех Н.М., Михалев А.В., Белецкий А.Б., Подлесный С.В. Особенности 

эмиссий 630.0 и 557.7 нм в области главного ионосферного провала: 17 марта 2015 г. ……………….. 57–71 

Пилипенко В.А. Воздействие космической погоды на наземные технологические системы ……... 72–110

Пилипенко В.А., Федоров Е.Н., Мазур Н.Г., Климов С.И. Электромагнитное загрязнение около
земного космического пространства излучением ЛЭП ………………………………………………….. 111–119

Янчуковский В.Л., Кузьменко В.С. Метод автоматической коррекции данных нейтронного мо
нитора на осадки в виде снега в реальном времени ………………………………………............................
120–126

CONTENTS 
 

Li Lu, Qing-Long Yu, Ping Zhou, Xin Zhang, Xin Zhang, Xin-Yue Wang, Yuan Chang. Simulation study 

of the energetic neutral atom (ENA) imaging monitoring of the geomagnetosphere on a lunar base …………… 
3–11 

Parkhomov V.A., Eselevich V.G., Eselevich M.V., Dmitriev A.V., Suvorova A.V., Khomutov S.Yu., 

Tsegmed B., Tero Raita. Magnetospheric response to the interaction with the sporadic solar wind diamagnetic structure ………………………………………………………………………………………………….

 
12–30 

Makarov G.A. Offsets in the geomagnetic indices of the magnetospheric ring current ………………..… 31–38

Potapov A.S., Polyushkina T.N., Tsegmed B. Morphology and diagnostic potential of the ionospheric 

Alfvén resonator …....................................................................................................................................... 39–56 

Zolotukhina N.A., Polekh N.M., Mikhalev A.V., Beletsky A.B., Podlesny S.V. Peculiarities of 630.0

and 557.7 nm emissions in the main ionospheric trough: March 17, 2015 …………………………………... 57–71 

Pilipenko V.A. Space weather impact on ground-based technological systems ………………………….
72–110

Pilipenko V.A., Fedorov E.N., Mazur N.G., Klimov S.I. Electromagnetic pollution of near-Earth space 

by power line emission …….................................................................................................................................... 111–119

Yanchukovsky V.L., Kuz’menko V.S. Method of automatic correction of neutron monitor data for pre
cipitation in the form of snow in real time ……………………………………………………………………. 120–126

 

Солнечно-земная физика. 2021. Т. 7. № 3 
 
 
 
        Solnechno-zemnaya fizika. 2021. Vol. 7. Iss. 3 

3 

УДК 52-854, 523 
 
 
 
 
 
 
       Поступила в редакцию 06.04.2021 
DOI: 10.12737/szf-73202101 
 
 
 
 
 
       Принята к публикации 07.06.2021 

 

МОДЕЛИРОВАНИЕ МОНИТОРИНГА ВИЗУАЛИЗАЦИИ ЭНЕРГИЧНЫХ 
НЕЙТРАЛЬНЫХ АТОМОВ ГЕОМАГНИТОСФЕРЫ НА ЛУННОЙ БАЗЕ 

SIMULATION STUDY OF THE ENERGETIC NEUTRAL ATOM (ENA) IMAGING 
MONITORING OF THE GEOMAGNETOSPHERE ON A LUNAR BASE 
 
Ли Лу 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, luli@nssc.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
 
Цин-Лун Ю 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, Yql04@nssc.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
 
Пин Чжоу 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, pzhou@nssc.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
 
Синь Чжан 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, xinchang@nssc.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
 
Сянь-Го Чжан 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, changxg@nssc.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
 
 
 

Li Lu 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy  
of Sciences, 
Beijing, China, luli@nssc.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, China 
 
Qing-Long Yu 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy 
of Sciences,  
Beijing, China, Yql04@nssc.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, China 
 
Ping Zhou 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy  
of Sciences, 
Beijing, China, pzhou@nssc.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, China 
 
Xin Zhang 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy  
of Sciences, 
Beijing, China, xinchang@nssc.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, China 
 
Xian-Guo Zhang 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy  
of Sciences, 
Beijing, China, changxg@nssc.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, China 
 
 
 
 

Ли Лу, Цин-Лун Ю, Пин Чжоу, Синь Чжан,  
 
 
          Li Lu, Qing-long Yu, Ping Zhou, Xin Zhang, 
Сянь-Го Чжан, Синь-Юэ Ван, Юань Чан 
 
 
 
         Xian-guo Zhang, Xin-yue Wang, Yuan Chang 

 
4

Синь-Юэ Ван 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, orchard@nssc.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
 
Юань Чан 
Лаборатория исследования космического пространства, 
Национальный центр космических наук КАН, 
Пекин, Китай, changyuan17@mails.ucas.ac.cn 
Пекинская главная лаборатория исследования космического пространства, 
Пекин, Китай 
Главная научно-техническая лаборатория ситуационной 
осведомленности о космическом пространстве КАН, 
Пекин, Китай 
Университет КАН, 
Пекин, Китай 

Xin-Yue Wang 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy  
of Sciences, 
Beijing, China, orchard@nssc.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, Chinа 
 
Yuan Chang 
Laboratory of Space Environment Exploration, 
National Space Science Center of the Chinese Academy  
of Sciences, 
Beijing, China, changyuan17@mails.ucas.ac.cn 
Beijing Key Laboratory of Space Environment Exploration, 
Beijing, China 
Key Laboratory of Science and Technology on Space 
Environment Situational Awareness CAS, 
Beijing, Chinа 
University of Chinese Academy of Sciences, 
Beijing, Chinа 

 

 
Аннотация. Поскольку цикл полного оборота 
Луны вокруг Земли в точности совпадает с циклом 
ее вращения, мы можем видеть только одну сторону 
Луны, обращенную к Земле. Благодаря прозрачности для корпускулярного излучения на Луне, на ее 
поверхности, обращенной к Земле, может быть 
установлена нейтральная базовая станция атомной 
телеметрии для осуществления долгосрочного непрерывного мониторинга геомагнитной активности. 
Разрабатывается 
двумерная 
система 
получения 
изображения энергичных нейтральных атомов с полем зрения 20°×20°, угловым разрешением 0.5°×0.5° 
и геометрическим фактором ~0.17 см2 ср. Моделирование магнитосферного кольцевого тока в энергетическом канале 4–20 кэВ для средней геомагнитной бури (Kp =5) показывает следующее: 1) примерно на 60RE (RE — радиус Земли) система получения 
изображения может получить 104 событий ЭНА 
(энергичный нейтральный атом) за 3 мин, что соответствует статистическим требованиям к инверсии 2D кодированных данных изображений и удовлетворяет требованиям анализа эволюции кольцевого тока суббури во время магнитных бурь над 
средой; 2) загадки радиационных потерь ЭНА в областях магнитопаузы и плазменного слоя хвоста 
магнитосферы были выявлены с помощью двумерной модели излучения ЭНА. Мониторинг с высоким 
пространственно-временным разрешением изображений ЭНА этих двух важных регионов обеспечит 
основу измерений поступления и механизма генерации энергии солнечного ветра; 3) средний интервал 
дискретизации событий ЭНА составляет около 16 мс 
на орбите Луны; спектральная разница во времени 
для установленного диапазона энергий составляет 
минуты, что позволит получить информацию о местоположении для отслеживания триггера вспышек 
частиц во время геомагнитных бурь. 
 
 

Abstract. Since the moon’s revolution cycle is exactly the same as its rotation cycle, we can only see that 
the moon is always facing Earth in the same direction. 
Based on the clean particle radiation environment of the 
moon, a neutral atomic telemetry base station could be 
established on the lunar surface facing Earth to realize 
long-term continuous geomagnetic activity monitoring. 
Using the 20°×20° field of view, the 0.5°×0.5° angle 
resolution, and the ~0.17 cm2 sr geometric factor, a twodimensional ENA imager is being designed. The magnetospheric ring current simulation at a 4–20 keV energy 
channel for a medium geomagnetic storm (Kp=5) shows 
the following: 1) at ~60 (RE is the Earth’s radius), the 
imager can collect 104 ENA events within 3 min to meet 
the statistical requirements of 2D coded imaging data 
inversion, so as to meet requirements of the analysis of 
the sub-storm ring current evolution process of magnetic storms above medium; 2) the ENA radiation loss 
puzzles in the magnetopause and magnetotail plasma 
sheet regions have been deduced and revealed by using 
the 2-D ENA emission model. High spatial-temporal 
resolution ENA imaging monitoring of these two important regions will provide the measurement basis for 
the solar wind energy input process and generation 
mechanism; 3) the average sampling interval of ENA 
particle events is about 16 ms at the moon’s orbit; the 
spectral time difference for the set energy range is on 
the order of minutes, which can provide location information to track the trigger of geomagnetic storm particle 
events. 
 
Keywords: energetic neutral atom (ENA), telemetry 
image, particle event, magnetosphere, ring current, 
magnetopause, plasma sheet. 
 
 
 
 
 

Моделирование мониторинга визуализации 
 
 
 
        Simulation study of the energetic neutral atom 

 
5

Ключевые слова: энергичный нейтральный атом 
(ЭНА), телеметрическое изображение, вспышка частиц, магнитосфера, кольцевой ток, магнитопауза, 
плазменный слой. 

 
 
 
 

 

 
INTRODUCTION 

At present, our cognition of near-Earth space plasma 
originates mainly from in situ measurements of charged 
particles and electromagnetic fields, which give values 
of parameters at a given moment at a given point and do 
not provide an instantaneou s overall picture of the phenomenon. It is a new development direction to obtain 
the telemetry image of instantaneous plasma in a large 
field of vision in a specific state to understand the plasma distribution and evolution process throughout the 
magnetosphere. 
Due to the resource constraints of satellites, most 
launched particle imaging satellites are equipped with 
one-dimensional detector arrays, using satellite spin to 
collect two-dimensional ENA spatial distributions, in 
exchange time for space, such as ASTRID/PIPPI [Barabash et al., 1997], IMAGE/H ENA [Burch, 2000], 
TC-2/NUADU [McKenna-Lawlor et al., 2004] TWINS 
[McComas et al., 2009], IBEX [McComas et al., 2011], 
etc. Two-dimensional ENA image signals of the magnetosphere are successfully obtained by satellite (such as 
IMAGE and TWINS) payloads in Earth’s higher orbit; 
the globe energetic ion distribution of the magnetosphere is inversed according to the measurement image. 
However, due to the low time resolution (10–30 min) of 
the inversion results of relative geomagnetic activity 
time scale (e.g., ~30 min of substorm process), ENA 
imaging is in the research stage of energetic ion distribution pattern in geomagnetic space. It has not been 
really used for dynamic process analysis of geomagnetic 
activity. The present inversion results with the highest 
time resolution (~1 min) are derived from TC2/NUADU [Lu et al., 2019] and are applied to the causal sequence analysis of particle events and environmental disturbances during geomagnetic activity. By comparing 4 min time resolution ENA image sequence with 
LANL’s in situ measurements, Lu et al. [2016] have 
found that ring current energetic ions increase before 
ion injection from the magnetotail, which challenges the 
existing concept that ring current particles are injected 
earthward from the magnetotail. 
At a higher lunar resonance orbit (apogee 50RE), 
IBEX [McComas et al., 2011] also detects ENA emission signals from the magnetopause, polar cusp, and 
magnetotail. ENA integral images over 40 hrs provide 
large-scale magnetospheric particle distribution morphologies. It also includes a plasma sheet truncation in 
the magnetotail, or a similar plasmoid image. The duration of such events is usually of the order of tens of 
minutes, and their spatial form cannot be maintained for 
nearly 40 hrs.  
For a spin satellite with one-dimensional detector array: 

the integral time of per pixel

canning period ( )
azimuth resolution (°) / 360°.
s
s

=

=
×
 

For example, a two-dimensional detector array in a high 
orbit can improve the scanning integration time resolution of 0.5° azimuth resolution by 720 times, that is, the 

scanning integration of the same counting ENA image 
in 40 hrs can be completed by the two-dimensional detector array in only 200 s. Developing a neutral atomic imager 
for two-dimensional detection array is therefore an effective way to improve payload time resolution. 
The moon’s period of revolution is exactly the same 
as its rotation period, so we see the moon always facing 
Earth on the same side. Consider the clean particle radiation environment of the moon to establish a neutral 
atomic imaging telemetry base station on the lunar surface facing Earth, to develop a two-dimensional neutral 
atomic imager with a small field of view (20°×20°), and 
to improve the spatial resolution of payload detection 
images by two-dimensional coding modulation design 
to realize long-term uninterrupted geomagnetic monitoring of Earth. 
 
1. 
SCIENTIFIC OBJECTIVES 

For the lunar outer space exploration environment, 
the neutral atomic imager will carry on the global imaging measurement of Earth’s magnetosphere. We study 
the overall structure and dynamics of the magnetosphere, as well as the influence and interaction of the 
magnetosphere with the solar wind and Earth’s atmosphere. A global assessment of the magnetospheric 
structure and dynamics is expected to be made including: 
1) probe objects: magnetospheric ring currents and 
plasmoid; 2) morphological changes of the magnetosphere: distortion of the magnetic field; 3) kinetic processes: magnetic storms or the trigger position and injection boundary of particle events during substorms. 
Energetic ions in the magnetosphere are bound by 
the magnetic field in two forms: 1. Energetic ions in the 
ring current of the magnetosphere spiral around the 
magnetic field line at different pitch angles, and rebound between the north and south poles. After their 
charge exchange with the environmental neutral atoms 
evaporating from the upper geocorona, they produce 
ENA. Those ENAs carrying the motion information of 
energetic ions radiate omnidirectionally [Roelof, 1987; 
Goldstein, McComas, 2018]. A neutral atom imager can 
receive this ENA signal anywhere in space. 2. In the 
magnetopause or magnetotail plasma sheet region, most 
of the energetic ions trapped by the geomagnetic field 
have a 90° pitch angle. As the density of geocorona neutral atoms in the medium is low, the probability of generating ENA through the charge exchange is also low. 
But they only spread in the equatorial plane, and the 
flux decay is slow too. Neutral atom imagers in deep 
space can detect them only in the ecliptic plane.  
The moon-based neutral atom imager will take ENAs 
of the ring current as the main detection object to carry out 
the simulation design for detection index analysis. 
 
2. 
MOON-BASED ENA IMAGING 
MEASUREMENT SIMULATION 

An average lunar orbit distance of 380000 km, 
~60 Earth radii (RE), 1 RE with respect to the moon’s 

Ли Лу, Цин-Лун Ю, Пин Чжоу, Синь Чжан,  
 
 
          Li Lu, Qing-long Yu, Ping Zhou, Xin Zhang, 
Сянь-Го Чжан, Синь-Юэ Ван, Юань Чан 
 
 
 
         Xian-guo Zhang, Xin-yue Wang, Yuan Chang 

 
6

orbit has an angle of less than 1°. And the space range 
of the magnetospheres’ ring current is between 2 and 
8RE. The field of view of the instrument is therefore 
designed to be 20°×20°, and the angle resolution is better than 0.5°. It is planned to integrate 40 onedimensional arrays each consisting of 40 detectors into a 
two-dimensional detector array. According to the lunar 
orbit (Figure 1, left) and a single detector’s collimator 
(Figure 1, bottom), specific technical specifications of 
the simulation design of the lunar basic ENA imager are 
shown in Table 1. ENA generated by ring current energetic ions is the strongest omnidirectional emission 
source for particle imaging exploration of Earth’s magnetosphere in lunar orbit. It is suitable for a tracer particle of ring current energetic ion distribution. The intensity and distribution of an ENA flux in different orbital 
positions are predicted by simulation, which is similar 
to the previous telemetry instrument design [Lu et al., 
2014]. The simulation of ENA imaging was carried out 
on four positions in lunar orbit: new moon, first quarter, 
full moon, and last quarter (Figure 1, top). The hypothetical detector units as shown on the right of Figure 1 could 
be used to form a 40×40 2D detection array, with the 
center of the array pointing to Earth (the direction of the 
arrows at the four lunar positions on the left of Figure 1). 

2.1. Imaging simulation of 2D ENA detector 
array 

The ring current energetic ion flux distribution in 
the equatorial plane under geomagnetic activity index 
Kp =5 is shown in Figure 2 [Lu et al., 2020]. At a distance of 60RE, spatial resolution of the object is 
0.526RE (~3355 km) for 0.5° angle resolution. The simulation results of 3-min integral imaging for the ring 
current ENA emission source are presented in Figure 3. 
While the details of the distribution of the ENA 
emission source of the ring current obtained at the 0.5° 
angle resolution are basically smoothed, the distribution 
profile of ENA emission distribution pattern of the 
magnetospheric ring current can still be given. Within 
the 20°×20° field of view, ~104 ENA events can be collected in 3 min, as shown in Table 2. 

2.2 Imaging simulation of one-dimensional 
ENA detector array with a turntable scan 

16 detector units (Figure 1, right) are arranged into a 
one-dimensional array of 8° elevation angles and added 
to a turntable scan of 360°azimuth angles. Select an 
azimuth resolution of 3° (~0.1–0.42RE corresponds to 
Earth); simulation ENA images and statistical ENA 
counts for 6 hr integration (the scan integration time per 
pixel is still 3 min) of the magnetospheric ring current is 
given in Figure 4 and Table 3 respectively. 
We use inhomogeneous pixel grid points (elevation 
of ~3355 km, azimuth ~667–2669 km). The red region 
with a large flux in Figure 4 shows the basic characteristics 
of the low-altitude ENA emission source. However, 
because the minimum resolution distance in the elevation direction is relatively large, the ENA strong emission region is slightly amplified in this direction. The 
low-energy end of the ENA energy spectrum (4–20 keV) 
has been selected for imaging detection simulation. The 

 

 

Figure 1. Schematic diagram of lunar orbit (top), geometry 
of single detector’s collimator (bottom) 

 

Figure 2. Model of equatorial energetic ion flux (4–20 keV) 
distribution of the magnetospheric ring current for a medium 
magnetic storm (Kp =5) 

blue coverage area with a lower ENA count in Figure 4 
corresponds to the ENA emission directly through 
charge exchange in the region of the larger energetic ion 
images of the full moon (Figure 4, top left) and the new 

Моделирование мониторинга визуализации 
 
 
 
        Simulation study of the energetic neutral atom 

 
7

 

   
 

   
 

Figure 3. At the geomagnetic activity index Kp =5, simulation results with 3-min integrated imaging measurement of ENA 
emission sources of the ring current at four positions in lunar orbit: full moon (top left), first quarter (top right), new moon (bottom left), and last quarter (bottom right). Black curves are projections of geomagnetic field lines on each diagram respectively 

   
 

  
 

Figure 4. At the geomagnetic activity index Kp =5, simulation results with 6-hr scanning imaging of ENA emission sources 
of the ring current at four positions in lunar orbit: full moon (top left), first quarter (bottom right), new moon (bottom left), and 
last quarter (bottom right). Azimuth markings of FOV and the projection of magnetic field lines are added in the simulation diagrams 

Ли Лу, Цин-Лун Ю, Пин Чжоу, Синь Чжан,  
 
 
          Li Lu, Qing-long Yu, Ping Zhou, Xin Zhang, 
Сянь-Го Чжан, Синь-Юэ Ван, Юань Чан 
 
 
 
         Xian-guo Zhang, Xin-yue Wang, Yuan Chang 

 
8

Table 1 

Instrument simulation design parameters 

Atomic species
H,O (simulation: H)

Energy range
4–200 keV (simulation: 4–20 keV)

Field of view
30°×30°(simulation: 20°×20°)

Angle resolution
≤0.5°(simulation: 0.5°×0.5°)

Geometric factor
Single detector: 10–4 cm2sr; ( simulation:×40×40 ≈ 0.173)

Sampling period
Simulation: 3 min 

Element numbers
Simulation: 30 (latitude) × 60 (longitude) × 18 (L value) = 32400

 
Table 2 
Statistics of ENA counts 

Average

count

Maximum

count

Total

Full Moon
6.8
297
10911

First 
quarter
6.4 
334 
10315 

New Moon 
5.9 
213 
9450 

Last 
quarter
6.4 
332 
10309 

moon (Figure 4, bottom left) show the symmetrical flux 
of the ring current, which approximately circles the 
distribution range of Earth’s magnetosphere. Due to the 
constraints of the geomagnetic field, the simulation 

Table 3 
ENA counts 

Average

count

Maximum

count

Total

Full Moon
4.9
59
9597

First quarter
4.6
83
8911

New Moon
4.2
57
8199

Last quarter
4.6
82
8908

ENA emission distribution characteristics of the flat 
circle, and the magnetotail distribution characteristics 
can be seen in the first quarter (Figure 4, top right) and 
the last quarter (Figure 4, bottom right). 
 
3. 
MOON-BASED ENA IMAGING 
MEASUREMENT SCHEME 
AND RESULT EXPECTATION 

3.1. 2D coded aperture modulation ENA 
imaging scheme 

In view of the satellite resources, it is impossible to 
assemble 1600 detector units. The minimum time resolution of a one-dimensional array turntable with 16 detector units needs 6 hrs, which cannot meet the monitoring requirements of geomagnetic activity evolution. The 
simulation results show that the maximum sampling rate 
of an ENA event is about 60/s, the average sampling 
interval of particle event is more than 16 ms. Therefore, 
we propose to apply the technique used for gamma ray 
imaging [Goldwurm et al., 1999; Bassani et al., 2005] 
that consists in using a two-dimensional coding aperture 
modulation technology to collect and transmit each single ENA event, Pi (t, x, y, E). The ENA image will be 
retrieved afterwards with a decoding procedure. A 2D 
coded aperture modulation ENA imaging detector mon
omer structure, as shown in Figure 5, would consist of a 
2D coded modulation grid (64×64 mm2), collimator, 
starting carbon film, cutoff carbon film, MCP (80×80 
mm2) assembly, and 2D position sensitive readout electronics (50×50 grids). The technical parameters of the 
collimator of the 2D coded aperture modulation ENA 
imager (Table 4) are similar to those of the above 2D 
simulation array design. 

Table 4 
Technical parameters of collimator for 2D coded aperture 
modulation ENA imager 

2D coding board modulation grid size
64×64 mm2

Grid transmittance
50 %

2D position sensitive MCP size
80×80 mm2

2D MCP reads out of grid points
50×50

Field of view
43°×43°

Angle resolution
0.5°×0.5°

Geometric factor
3.915 cm2sr

High voltage deflector plate length
203 mm

High voltage deflector plate distance
80 mm

Tables 2 and 3 show that the maximum of 100 ENA 
counts can be obtained from the sampling integral results of a single pixel for 3 min, and the total ENA event 
count is close to 104, to meet the statistical requirements 
of the 2D coded modulation image inversion recovery. 
Here, the pixel distribution of the 2D inversion recovery 
image is continuous. The spatial resolution is only related to the ENA event statistics. The larger is the ENA 
event statistics, the higher is the spatial resolution of the 
2D inversion recovery image. 

3.2. Magnetospheric ring current monitoring 

The main area of ENA event during geomagnetic activity is over the polar area of about 3000 km above the 
ground. The energetic ion flux up to 106 cm–2sr–1keV–1s–1 
in the low-latitude region of L=5, the number of ENA 
events corresponding to pixels in the 3-min integration 
time is about a dozen. The ion flux around L=8 at the 
ring current is about 105 cm–2sr–1keV–1s–1 for a 3- min 
integration time, the ENA event count for pixels is only 
in the order of magnitude of the single digits, see Figures 2 and 3. The simulation does not consider the effect 
of noise, assuming that the particle emission environment is clean. During exploration practice, the singledigit particle count is submerged in noise, and the integration time of at least 2 orders of magnitude is added to 
obtain the effective recording of the contour shape of 
the magnetosphere, about 5 hr. 
The general substorm disturbance period is more than 
30 min. Simulation results show that  the moon-based 

Моделирование мониторинга визуализации 
 
 
 
        Simulation study of the energetic neutral atom 

 
9

 

   
 

Figure 5. Schematic illustration of the 2D coded aperture modulated ENA detector (left) and geometry of the collimator 
(right) 
 
ENA imager can retrieve the low height ENA signal distribution pattern reflecting the main characteristics of 
geomagnetic activity at a set time of 3 min, and meet the 
monitoring requirements of geomagnetic activity. 

3.3. ENA emission loss puzzles in the magnetopause and magnetotail plasma sheet regions 

During the geomagnetic activity, the IBEX satellite 
simultaneously observed the ENA emission enhancement at the magnetopause and the polar cusp on the 
lunar resonance Orbit (IBEX Data Release 12, ORBIT 
52, 2019) with about the same order of magnitude. ENA 
imagers on board the Earth-orbiting satellites had never 
measured a strong ENA flux signal from the magnetopause or from the plasma region. It is by at least 2 orders of magnitude weaker than the ENA emission signal 
in the cusp region generated by the ring current. The 
measurement facts of the IBEX satellite in the lunar 
resonance orbit give rise to the puzzle of the missing 
ENA emission in the magnetopause and magnetotail 
plasma sheet regions. 
At the magnetopause and in the plasma sheet of the 
magnetotail formed under the action of solar wind pressure, the pitch angle of the energetic ions picked up by 
the geomagnetic field is 90°. The background geocorona 
neutral atoms and their density distribution are inversely 
proportional to the square of the geocentric distance 
[Rairden et. al., 1983]. The ENA generated by the 
charge exchange of energetic ions and upper geocorona 
atoms can only propagate in the equatorial plane. Although the original ENA emission flux is small, the attenuation (inversely proportional to RE) of 2D propagation is relatively small. At the magnetopause (about a 
dozen RE), the density of low-energy neutral atoms 
evaporated from the geocorona decays to 10–2 of the 

cusp region, and there is no order-of-magnitude difference in energetic ion fluxes between the magnetopause 
and the cusp. In lunar resonance orbit (50RE) or lunar 
orbit(60 RE), in view of the conservation of total ENA 
emission flux, the ENA emission flux at the magnetopause and in the cusp decays by R–1 and R–2 respectively, 
which are about 2×10–2 and 3×10–4 of the original ones. 
Usually, the orbit inclination of Earth’s satellite that 
carried the ENA imager is larger, is not operating near 
the equatorial plane. The ENA emission flux from the 
magnetopause and plasma sheet is weak. So, the ENA 
Imager carried by Earth-orbiting satellites has never 
observed a clear ENA imaging of the magnetopause and 
the magnetotail plasma sheet. Just within the ecliptic 
plane near the moon, the omnidirectional ENA emission 
flux generated by the ring current achieves balance with 
the 2D ENA emission flux driven by the magnetopause 
and the magnetotail plasma sheet. The IBEX-HI’s 
measurement in orbit 23 [McComas et al., 2011] illustrates just this point. Suspected plasma sheet truncation 
(10:48 UT on the 5th to 02:23 UT on the 7th November 
2009, orbit 52) or the plasmoid (21:21 UT on the 27th to 
13:40 UT on the 29th October 2009, orbit 51) was obtained by IBEX in lunar resonance orbit [McComas et 
al., 2011], but they can hardly last 40 hrs. The IBEX 
measurement (orbit 51) may be interpreted as the average image of multiple plasmoid events repeated for 
about 40 hrs during the magnetic storm. Imagine if we 
could complete the ENA emission distribution pattern 
imaging measurement of plasmoid in 3 min, it can be 
used as a direct detection basis for the plasmoid generated by magnetotail reconnection. 
The magnetopause, the magnetotail plasma sheet, 
and the polar cusp are three important gateways for solar wind energy input to the magnetosphere. The distri
Ли Лу, Цин-Лун Ю, Пин Чжоу, Синь Чжан,  
 
 
          Li Lu, Qing-long Yu, Ping Zhou, Xin Zhang, 
Сянь-Го Чжан, Синь-Юэ Ван, Юань Чан 
 
 
 
         Xian-guo Zhang, Xin-yue Wang, Yuan Chang 

 
10

bution pattern and evolution process of ENA emission 
in these regions can provide information on the solar 
wind energy input mechanism, and they are very important monitoring regions. Moon-based ENA imaging 
monitoring FOV can cover the entire magnetosphere, 
and simultaneously obtain ENA emission signals from 
these three important regions with basically balanced 
flux intensity. During the geomagnetic activity period, 
the distribution pattern, evolution process, and response time sequence of ENA emission of the magnetopause, ring current, and plasma sheet will provide an 
important basis for revealing the mechanism of geomagnetic activity. 

3.4. Particle triggers event tracing 

The ENA imaging array is intended to use the 2D 
coded modulation energy spectrum recording, particle 
events with a temporal resolution of up to millisecond. 
For deep space exploration (~60RE), the ENA spectral 
response of different energies in geomagnetic activity 
events has an about minute time difference (Table 5). It 
is assumed that different energetic ions produced by an 
acceleration mechanism (e.g., magnetic reconnection) 
are injected at the initial triggering site of geomagnetic 
activity simultaneously. According to the response time 
difference between energy spectrum curves of different 
energy channels, the emission source location of energetic ions can be inferred: the less the time difference in 

Table 5 

Energy and detection delay time 
 of H ENA at 60 RE distance 

E (keV)
T (s)

5
392.31

10
277.46

100
87.732

1000
27.738

energy spectrum response, the shorter the transport distance of energetic ions causing the charge exchange. It 
is generally believed that there are two possible sources 
of energetic ions: one is the entry of energetic ions directly from the solar wind at polar cusps, and the other 
is the precipitating energetic ions accelerated along the 
magnetic field line from the magnetotail. The time difference in the ENA spectrum generated above can be 
calculated according to different propagation distances. 
We can use the detected ENA spectrum time difference 
containing the energetic ion motion information to track 
the trigger position generated by those energetic ion 
events [Lu et al., 2020]. 
When our payload is placed on the dark side of the 
moon, we can obtain an all-sky map of ENA flux distributions similar to the all-sky map of H differential flux 
detected by IBEX-Hi over the past three years [McComas et al., 2012]. By using the particle tracking technique mentioned above, we can estimate whether these 
ENA emission signals are from the heliopause or not. 
At the very least, the parallax of those ENA ribbons in 
different energy channels [McComas et al., 2012] provides information about the location of the ENA emission source. 

SUMMARY 

The moon has a clean radiation environment and a 
stable surface facing Earth. It is beneficial for the 
limited FOV ENA imager to target the ground, and 
suitable for the establishment of an ENA imaging 
monitoring station and a docking daily transit data 
transmission ground station. During the lunar day (from 
first quarter, full moon to the last quarter) charging 
phase, the payload around the magnetotail is convenient 
to monitor in the main energetic particle flux 
distribution and evolution of the ring current. At 60 RE 
from Earth, in the ecliptic plane, the 2D ENA emission 
of the magnetopause and the magnetotail plasma sheet 
has fluxes with the same order of magnitude as the omnidirectional ENA emission generated by the ring current in the cusp region. The simulation results show that 
the minimum temporal resolution of ENA imaging is 
about 3 min, and the 2D spatial resolution is better than 
0.5°×0.5°, which meets the needs of monitoring the 
distribution pattern and evolution of energetic particles 
in geomagnetic activities. Among them, the short timescale evolution of ENA emission patterns of the 
magnetopause and magnetotail plasma sheets is an 
important basis for revealing the energy process and 
transformation mechanism of geomagnetic activities. 
Energy spectrum recording mode of 2D coded 
modulation of ENA imager, Pi (t, x, y, E) and the time 
difference in the ENA energy spectrum generated by 60 
RE distance transmission also provide indirect data 
support for geomagnetic activity trigger location 
tracking. 
This study was supported by the Strategic Priority Program (SPP) on Space Science Advanced Research of 
Space Science Issues and Payloads (No. XDA 15017100). 
 
REFERENCES 

Bassani L., Rosa A.D., Bazzano A., Bird A.J., Dean A.J., 
Gehrels J.B., et al. Is the integral/ibis source IGR J17204-3554 a 
gamma-ray-emitting galaxy hidden behind the molecular cloud 
NGC 6334. Astrophys. J. 2005, vol. 634, L21. DOI: 10.1086/ 
498718. 
Barabash S., C:son Brandt P., Norberg O., Lundin R., 
Roelof E.C., Chase C.J., et al. Energetic neutral atom imaging 
by the ASTRID microsatellite. Adv. Space Res. 1997, vol. 20, 
no. 4-5, pp. 1055–1060.  
Burch J.L. IMAGE mission overview. Space Sci. Rev. 
2000, vol. 91, pp. 1–14. DOI: 10.1023/A:1005245323115. 
Goldstein J., McComas D.J. The Big Picture: Imaging of the 
Global Geospace Environment by the TWINS Mission. Rev. 
Geophys. 2018, vol. 56, iss. 1, pp. 251–277. DOI: 10.1002/2017 
RG000583. 

Goldwurm A., Goldoni P., Laurent P., Lebrun F. Imaging 
simulations of the galactic nucleus with the ibis gamma-ray 
telescope on board integral. Astrophys. Lett. Communications. 
1999, vol. 38, pp. 333–336. 

IBEX Data Release 12. Remote measurements of magnetospheric Energetic Neutral Emissions by the Interstellar 
Boundary Explorer, 2019. http://ibex.swri.edu/ibexpublicdata 
Data_Release_12. 

Lu L., McKenna-Lawlor S, Balaz J., Shi Jiankui, Yang 
Chuibai, Luo Jing. Technical configuration and simulation of 
the NAIS-H for the MIT mission. Chin. J. Space Sci. 2014, 
vol. 34, iss. 3, pp. 341–351. DOI: 10.11728/cjss2014.03.341. 
Lu L., McKenna-Lawlor S, Cao J B, Kudela K, Balaz J. 
The causal sequence investigation of the ring current ion-flux 

Моделирование мониторинга визуализации 
 
 
 
        Simulation study of the energetic neutral atom 

 
11

increasing and the magnetotail ion injection during a major 
storm. Science China Earth Sciences. 2016, vol. 59, pp. 129–
144. DOI: 10.1007/s11430-015-5121-7. 
Lu L., McKenna-Lawlor S., Balaz J. Close up observation 
and inversion of low-altitude ENA emissions during a substorm event. Science China Earth Sciences. 2019, vol. 62, 
pp. 1024–1032. DOI: 10.1007/s11430-018-9307-x. 
Lu L., Yu Q.-L., Lu Q. Near-approach imaging simulation 
of low-altitude ENA emissions by a LEO satellite. Front. Astron. 
Space Sci. 2020, vol. 7, id. 35. DOI: 10.3389/fspas.2020.00035. 

McComas D.J., Allegrini F., Baldonado J., Blake B., 
Brandt P.C., Burch J., et al. The two wide-angle imaging neutral-atom 
spectrometers 
(TWINS) 
NASA 
mission-ofopportunity. Space Sci. Rev. 2009, vol. 142, pp. 157–231). 
DOI: 10.1007/s11214-008-9467-4. 

McComas D.J., Carrico J.P., Hautamaki B., Intelisano M., 

Lebois R., Loucks M., et al. A new class of long-term stable lunar 
resonance orbits:Space weather applications and the Interstellar 
Boundary Explorer. Space Weather. 2011, vol. 9, iss. 11, 
S11002. DOI: 10.1029/2011SW000704. 

McComas D.J., Dayeh M.A., Allegrini F., Bzowski M., de 

Majistre R., Fujiki K., et al. The frist three years of IBEX observations and our evolving heliosphere. Astrophys. J. Supplement Series. 2012, vol. 203, no. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

McKenna Lawlor S., Balaz J., Barabash S., Johnsson K., 
Lu L., Shen C., et al. The energetic NeUtral Atom Detector 
Unit (NUADU) for China’s Double Star Mission and its 
Calibration. Nuclear Inst. & Methods. 2004, vol. 503, iss. 3, 
pp. 311–322. DOI: 10.1016/j.nima.2004.04.244. 

Rairden R L, Frank L.A., Craven J.D. Geocoronal imaging 
with dynamics explorer. Geophys. Res. Lett. 1983, vol. 91, 
no. A12, pp. 13613–13630. DOI: 10.1029/GL010i007p00533. 
Roelof E.C. Energetic neutral atom image of a storm-time 
ring current. Geophys. Res. Lett. 1987, vol. 14, iss. 6, pp. 652–
655. DOI: 10.1029/GL014i006p00652. 

How to cite this article: 
Li Lu, Qing-long Yu, Ping Zhou, Xin Zhang, Xian-guo Zhang, Xinyue Wang, Yuan Chang. Simulation study of the energetic neutral atom 
(ENA) imaging monitoring of the geomagnetosphere on a lunar base. 
Solar-Terrestrial Physics. 2021. Vol. 7, iss. 3. P. 3–11. DOI: 10.12737/ 
szf-73202101.